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Abstract. Using the Hamilton–Jacobi formalism, we study extra force and extra mass in a recently intro-
duced non-compact Kaluza–Klein cosmological model. We examine the inertial 4D mass m0 of the inflaton
field on a 4D FRW bulk in two examples. We find that m0 has a geometrical origin and antigravitational
effects on a non-inertial 4D bulk should be a consequence of the motion of the fifth coordinate with respect
to the 4D bulk.
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1 Introduction

The extra dimension is already known to be of po-
tential importance for cosmology [1,2]. During the last
years there were many attempts to construct a consis-
tent brane world (BW) cosmology [3]. On the other hand,
the induced-matter, or space-time-matter (STM) theory
stands out for its closeness to the Einstein’s project of
considering matter and radiation as manifestations of pure
geometry [4]. Indeed, the gist of the whole theory is to as-
sert that, by embedding the ordinary space-time into a
five-dimensional vacuum space, it is possible to describe
the macroscopic properties of matter in geometrical terms.
Picking up several examples of cosmological and gravi-
tational models, the theory shows how to interpret the
energy-momentum tensor corresponding to some standard
matter configurations in terms of the geometry of the five-
dimensional vacuum space. It was recently questioned in
a recent article [5]. The induced-matter theory is some-
times given the name of Kaluza–Klein non-compact field
gravity, since Klein’s compactness condition [6] is dropped
from the basic assumptions of the theory.

The idea that matter in four dimensions (4D) can
be explained from a 5D Ricci-flat (RAB = 0) Rieman-
nian manifold is a consequence of Campbell’s theorem. It
says that any analytic N -dimensional Riemannian man-
ifold can be locally embedded in a (N + 1)-dimensional
Ricci-flat manifold. This is of great importance for estab-
lishing the generality of the proposal that 4D field equa-
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tions with sources can be locally embedded in 5D field
equations without sources [7]. On the other hand, recently
it was remarked by Anderson that such a theorem lends
only inadequate support, both because it offers no guar-
antee of continuous dependence on the data and because
it disregards causality [5]. In his paper he points out that
the theorem is only valid for analytic functions which ren-
ders it inappropiate for the study of the relativistic field
equations in modern physics. However, analytic functions
seem only inappropiate to describe some topological de-
fects like black holes, but not to study cosmological models
for which the manifold is global and there are no singulari-
ties. Another recent contribution to this issue was made by
Katzourabis [8], who demonstrated a global generalization
of Campbell’s theorem, removing the assumption of local-
ity: Any pseudo-Riemannian analytic N -manifold can be
embedded (the whole structure) naturally and isometri-
cally into (N+1) bulk with arbitrarily prefixed topological
structure, fibred over the given one, with vanishing Ricci
curvature and torsion of some connection locally compat-
ible with the global metric on the bulk. More generally
he found that any 4D manifold with a global tensor field
representing the solution of 4D general relativity equa-
tions can be embedded naturally and isometrically into a
(4+d)-manifold (d ∈ N) Ricci-flat and torsion free, where
the global topology, the differential structure and the di-
mensionality of the bulk can be fixed arbitrarily. Briefly
stated, 4D phenomenological matter can be induced by
a 5D apparent vacuum in the framework of cosmological
models where the universe is described by a 3D spatially
isotropic, homogeneous and flat (analytic) metric.
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An important question in STM and BW theories can
be split up in two parts.
(1) How to extract the correct 4D interpretation from ge-
ometrical objects, like scalar fields which appear in more
than four dimensions?
(2) How to predict observable effects from the extra di-
mensions? There are at least two ways to measure the
effect, one which shows no change [9] and one which does
[10]. For example, an attempt to understand the first of
these questions in the framework of inflationary cosmology
[which is governed by the neutral scalar (inflaton) field],
from a 5D flat Riemannian manifold was made in [11].

In the last years extra force and extra mass have been
subjects of study [12]. It should be an observable effect
from extra dimensions on the 4D space-time. The aim
of this work is to extend the Hamilton–Jacobi formalism
developed by Ponce de Leon [9] to cosmological models
where the expansion of the universe is governed by a sin-
gle inflaton field. This interpretation has the advantage of
being free from the complications and ambiguities of the
geodesic approach. The formalism provides an unambigu-
ous expression for the rest mass and its variation along
the motion as observed in 4D. It is independent of the co-
ordinates and any parametrization used along the motion.

2 Cosmological approach

In a cosmological context, the energy of scalar fields has
been argued to contribute to the expansion of the universe
[13], and has been proposed to explain inflation [14] as well
as the presently observed accelerated expansion [15]. In
this paper we shall consider a cosmological model governed
by a neutral scalar field that initially suffers an inflation-
ary expansion that has a change of phase towards a decel-
erated (radiation and later matter dominated) expansion
that thereinafter evolves towards the observed present day
(quintessential) expansion.

We consider the recently introduced [16] 5D metric

dS2 = ε
(
ψ2dN2 − ψ2e2Ndr2 − dψ2) , (1)

where dr2 = dx2 + dy2 + dz2. In order to describe cosmo-
logical models we shall consider a 3D spatially isotropic,
homogeneous and flat metric (i.e., x2 = y2 = z2). Here,
the coordinates (N , r) are dimensionless, the fifth coor-
dinate ψ has spatial unities and ε is a dimensionless pa-
rameter that can take the values ε = 1,−1. The met-
ric (1) describes a flat 5D manifold in apparent vacuum
(GAB = 0). With the aim to describe neutral matter in
a 5D geometrical vacuum (1), as in [17], we can consider
the Lagrangian

(5)L(ϕ,ϕ,A) = −
√∣∣∣∣ (5)g

(5)g0

∣∣∣∣ (5)L(ϕ,ϕ,A), (2)

where |(5)g| = ψ8e6N is the absolute value of the determi-
nant for the 5D metric tensor with components gAB (A,B
take the values 0, 1, 2, 3, 4) and |(5)g0| = ψ8

0e6N0 is a con-
stant of dimensionalization determined by |(5)g| evaluated

at ψ = ψ0 and N = N0. We shall consider N0 = 0, so
that (5)g0 = ψ8

0 . We define the vacuum as a purely kinetic
5D Lagrangian on a globally 5D flat metric [in our case,
the metric (1)] [17]. Since the 5D metric (1) describes a
manifold in apparent vacuum, the density Lagrangian L
in (2) must to be

(5)L(ϕ,ϕ,A) =
1
2
gABϕ,Aϕ,B , (3)

which represents a free scalar field. In the 3D comoving
frame Ur = 0, the geodesic dynamics dUC

dS = −ΓCABUAUB
with gABUAUB = 1 gives us the velocities

Uψ = − 1√
u2(N) − 1

,

Ur = 0,

UN =
u(N)

ψ
√
u2(N) − 1

,

(4)

which are satisfied for S(N) = ±|N |. We shall consider the
case S(N) = |N |. In this representation dψ

dN = ψ/u(N).
Thus the fifth coordinate evolves as

ψ(N) = ψ0e
∫

dN/u(N). (5)

Here, ψ0 is a constant of integration that has spatial uni-
ties. From the mathematical point of view, we are taking
a foliation of the 5D metric (1) with r constant.

In order to obtain equations of practical use, we can
introduce the action S(xA) as a function of the generalized
coordinates xA. Hence, since the momentum PA = − ∂S

∂xA ,
for a diagonal tensor metric gAB , we obtain the Hamilton–
Jacobi equation

gAB
(
∂S
∂xA

)(
∂S
∂xB

)
= M2

(5), (6)

where M(5) is the invariant 5D gravitational mass of the
object under study (in our case, the mass of the inflaton
field). In the particular frame (4), with the Lagrangian (2)
and (3), M(5) describes the 5D mass of the scalar field ϕ
in the frame (4). In this case the tensor metric is symmet-
ric (and diagonal), and the Hamilton–Jacobi equation (6)
adopts the particular form

gNN
(

∂S
∂ϕ,N

)2

+ gψψ
(
∂S
∂ϕ,ψ

)2

= M2
(5). (7)

3 Extra force and extra mass

In general, the line element (1) can be written as

dS2 = ds2 + dS2
(4), (8)

where ds2 describes the 4D line element and dS2
(4) only

the line element related with the fifth coordinate. We shall
define the extra force

F ext =
dP x

4

ds
, (9)
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as the force on the submanifold ds2 due to the motion of
the fifth coordinate. In general, P x

4
is defined as

P x
4

=
∂(5)L

∂ϕ,x4
. (10)

In the frame (4) P x
4 ≡ Pψ, and it is given by

Pψ = −ψ4e3N

ψ2
0

(
gψψ

)2
ϕ,ψ,

which also can be written in terms of the potential:

Pψ = −ψ4e3N

ψ2
0

gψψ
∂V (ϕ)
∂ϕ,ψ

, (11)

where V (ϕ) depends on the particular frame of the ob-
server. In the next subsections we shall see different forms
of it in two different frames. Hence, in the frame (4) the
extra force

F ext =
ψ3e3N

ψ2
0


3

�

ψ

ψ
ϕ,ψ + 3ϕ,ψ+

�
ϕ,ψ


 (12)

holds, where the overstar denotes the derivative with re-
spect to N .

On the other hand, from the equation gABUAUB = 1,
we obtain the invariant 5D mass M(5):

gABP
APB = M2

(5), (13)

where PA = M(5)U
A is the momentum. For example, in

the frame (4) the 4D mass m0 and the 5D invariant mass
M(5) are given respectively by

M2
(5) = gNN

(
∂S
∂ϕ,N

)2

+ gψψ
(
∂S
∂ϕ,ψ

)2

,

m2
0 = gNN

(
∂S
∂ϕ,N

)2

, (14)

so that the difference

m2
0 −M2

(5) = −gψψ
(
∂S
∂ϕ,ψ

)2

(15)

is non-zero. The interesting thing here is that m2
0 > M2

(5).
In other words, in the frame (4) the motion of the fifth
coordinate has an antigravitational effect on the field ϕ
on the submanifold (or bulk) ds2. In the next sections
we shall study some examples which could be relevant in
cosmological models.

3.1 A 4D FRW cosmology

We consider the transformations t =
∫
ψ(N)dN , R = rψ,

L = ψ(N) e− ∫
dN/u(N), such that, for ψ(t) = 1/h(t), we

obtain the 5D metric

dS2 = ε
(
dt2 − e2

∫
h(t)dtdR2 − dL2

)
,

where L = ψ0 is a constant and

h2(t) =
(
ḃ/b
)2

= (8/3)πG 〈ρ〉

is the effective Hubble parameter defined by means of
the effective scale factor of the universe b. In this frame
(R, t, L), the velocities ÛA = ∂x̂A

∂xBU
B are

U t =
2u(t)√
u2(t) − 1

, UR = − 2r√
u2(t) − 1

, UL = 0,

(16)
where the old velocities UB are UN , Ur = 0 and Uψ and
the velocities ÛB are constrained by the condition

ĝABÛ
AÛB = 1. (17)

The variables (t, R, L) have physical meaning, because t is
the cosmic time and (R,L) are spatial variables. Since the
line element is a function of time t (i.e., S ≡ S(t)), the new
coordinate R gives us the physical distance between galax-
ies separated by cosmological distances: R(t) = r/h(t).
Note that for r > 1 (r < 1), the 3D spatial distance R(t)
is defined on super (sub) Hubble scales. Furthermore b(t)
is the effective scale factor of the universe and describes
its effective 3D Euclidean (spatial) volume. Hence, the ef-
fective 4D metric is a spatially (3D) flat FRW one,

dS2 → ds2 = ε
(
dt2 − e2

∫
h(t)dtdR2

)
, (18)

and has an effective 4D scalar curvature (4)R = 6(ḣ+2h2).
The metric (18) has a metric tensor with components gµν
(µ, ν take the values 0, 1, 2, 3). The absolute value of the
determinant for this tensor is |(4)g| = (b/b0)6. The density
Lagrangian in this new frame was obtained in a previous
work [17]:

(4)L [ϕ(R, t), ϕ,µ(R, t)]

=
1
2
gµνϕ,µϕ,ν − 1

2

[
(Rh)2 − b20

b2

]
(∇Rϕ)2 , (19)

and the equation of motion for ϕ yields

ϕ̈+ 3hϕ̇− b20
b2

∇2
Rϕ (20)

+

[(
4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
ϕ̇+

(
b20
b2

− h2R2
)

∇2
Rϕ

]
= 0.

From (19) and (20), we obtain respectively the effective
scalar 4D potential V (ϕ) and its derivative with respect
to ϕ(R, t):

V (ϕ) ≡ 1
2

[
(Rh)2 −

(
b0
b

)2
]

(∇Rϕ)2 , (21)

V ′(ϕ) ≡
(

4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
ϕ̇

+
(
b20
b2

− h2R2
)

∇2
Rϕ, (22)
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where the prime denotes the derivative with respect to ϕ.
Equations (19) and (20) describe the dynamics of the in-
flaton field ϕ(R, t) in the metric (18) with the Lagrangian

(4)L[ϕ(R, t), ϕ,A(R, t)]

= −
√∣∣∣∣ (4)g

(4)g0

∣∣∣∣
[
1
2
gµνϕ,µϕ,ν + V (ϕ)

]
, (23)

where
∣∣(4)g0∣∣ = 1.

Furthermore, the function u can be written as a func-
tion of time, u(t) = −h2

ḣ
, where the overdot represents

the derivative with respect to the time. The solution
N = arctanh[1/u(t)] corresponds to a time dependent
power-law expanding universe, h(t) = p(t)t−1, such that
the effective scale factor goes as b ∼ e

∫
p(t)/tdt. A model

for the evolution of the universe was recently developed in
[18]. Furthermore, the 4D energy density ρ and the pres-
sure p are [16]

8πGρ = 3h2, (24)

8πGp = −(3h2 + 2ḣ). (25)

Note that the function u(t) can be related to the decelera-
tion parameter q(t) = −b̈b/ḃ2: u(t) = 1/[1+ q(t)]. In what
follows we shall consider ε = 1 when the universe is accel-
erated (q < 0) and ε = −1 in epochs when it is decelerated
(q > 0). From the condition (17) we can differentiate some
different stages of the universe. If u2(t) = 4r2(b/b0)2−1

3 > 1,
we obtain that r can take the values r > 1 (r < 1) for
b/b0 < 1 (b/b0 > 1), respectively. Note that now the con-
dition (17) implies that r ≡ r(t), for a given h(t). In this
case q < 0, so that the expansion is accelerated. On the
other hand if u2(t) = 4r2(b/b0)2−1

3 < 1, r can take the val-
ues r < 1 (r > 1) for b/b0 > 1 (b/b0 < 1), respectively.
In this stage q > 0 and the expansion of the universe
is decelerated, so that the function u(t) takes the values
0 < u(t) < 1 and the velocities (16) become imaginary.
Thus, the metric (18) shifts its signature from (+,−,−,−)
to (−,+,+,+). When u(t) = 1 the deceleration parameter
becomes zero because b̈ = 0. At this moment the veloci-
ties (16) rotate synchronically in the complex plane and r
takes the values r = 1 or r < 1 for b/b0 = 1 or b/b0 > 1,
respectively. On the other hand, the effective 4D energy
density operator ρ is

ρ =
1
2

[
ϕ̇2 +

b20
b2

(∇ϕ)2 + 2V (ϕ)
]
. (26)

Hence, the 4D expectation value of the Einstein equation
(
ḃ

b

)2

=
8πG

3
ρ

on the 4D FRW metric (18) will be

〈
h2〉 =

4πG
3

〈
ϕ̇2 +

b20
b2

(∇ϕ)2 + 2V (ϕ)
〉
, (27)

where G is the gravitational constant and
〈
H2
〉 ≡ h2 =

ḃ2/b2.
In this frame the 5D momentum PL is null: PL = 0.

This implies that the extra force will be

Fext = 0. (28)

It also can be viewed from the point of view of the extra
mass. In this frame m2

0 = M2
(5) where

(
∂S
∂ϕ,t

)2

− e2
∫
h(t)dt

(
∂S
∂ϕ,R

)2

= M2
(5). (29)

Hence, the inertial 4D mass m0 is the same as the invari-
ant 5D mass M(5), so that there is no extra force on the
effective 4D frame. This can be justified from the fact that
the fifth coordinate L do not varies in this frame. In other
words the 4D bulk ds2 is the same as the 5D manifold dS2,
because dS(4) = 0 for an observer that “expands with the
universe” in an inertial frame.

3.2 A frame with variable fifth coordinate

Another interesting frame can be described by means of
the transformation t =

∫
ψ(N)dN , R = rψ and ξ =

ψ(N)e
∫ �

H(N)/H(N)dN , so that the 5D velocities are

U t =
2u(t)√
u2(t) − 1

, (30)

UR = − 2r√
u2(t) − 1

, (31)

Uξ =
u(t)√
u2(t) − 1

(
Ḣ

hH
− ḣ

h2

)
H

H0
. (32)

In this frame the 5D line element is given by

dS2 = ε

(
dt2 − e2

∫
h(t)dtdR2 −

(
H0

H

)2

dξ2
)
, (33)

where the 4D line element (or “bulk”) ds2 is given by the
first two terms in (33):

ds2 = ε
(
dt2 − e2

∫
h(t)dtdR2

)
, (34)

and h2(t) = H2(t) + C
3 for a given constant C. Hence,

the extra force on the 4D bulk will be F ext = dP ξ

ds . Note
that the extra force comes from the motion of the fifth
coordinate in the effective 4D bulk. In other words, an
observer in the 4D bulk (34) will move under the influence
of an extra force that, in the example here studied, takes
the form

F ext =

(∣∣∣∣∣1 − r2ḣ2

h4 e2
∫
hdt

∣∣∣∣∣
)−1/2

dP ξ

dt
, (35)
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which is invariant under changes of signature (i.e., ε =
1 → ε = −1). The 5D Lagrangian in this frame takes the
form

(5)L(ϕ,ϕ,A) = −
(
b

b0

)3
H0

H

(
1
2
gαβϕ,αϕ,β + V (ϕ)

)
,

(36)
so that the momentum P ξ is

P ξ = −
(
b

b0

)3
H0

H
gξξ

∂V (ϕ)
∂ϕ,ξ

. (37)

In this representation the potential V (ϕ) assumes the form

V (ϕ) =
1
2

[
(Rh)2 −

(
b0
b

)2
]

(∇Rϕ)2

− 1
2

(
H

H0

)2

ϕ2
,ξ − H

H0
(Rh)ϕ,ξ∇Rϕ, (38)

so that the momentum P ξ is

P ξ =
(
b

b0

)3 [(
H

H0

)
ϕ,ξ + (Rh) ∇Rϕ

]
. (39)

Note that the effective kinetic component in the 5D La-
grangian (36) is 4D, but the potential (38) is evaluated in
the 5D frame (30), (31) and (32). From (35) and (39), we
obtain the extra force for this frame

F ext =
(
b

b0

)3


∣∣∣∣∣∣1 −

(
Rḣ

h

)2(
b

b0

)2
∣∣∣∣∣∣



−1/2

×
[(

3
ḃ

b

H

H0
+
Ḣ

H

)
ϕ,ξ

+

(
3
ḃ

b
(Rh) +

(
Ṙh+Rḣ

))
∇Rϕ

+
H

H0

d
dt

(ϕ,ξ) + (Rh)
d
dt

(∇rϕ)
]
, (40)

where
(
b
b0

)2
= e2

∫
hdt. The important fact here is that

the extra force is originated in the last two terms of the
5D potential (38), which depends on the fifth coordinate
ξ.

On the other hand the 4D squared mass of the inflation
field ϕ on the 4D bulk (34) is given by

m2
0 =

(
∂S
∂ϕ,t

)2

− e−2
∫
hdt
(
∂S
∂ϕ,R

)2

, (41)

so that one obtains

m2
0 −M2

(5) =
(
H

H0

)2(
∂S
∂ϕ,ξ

)2

, (42)

which gives m2
0 ≥ M2

(5) because the right hand of (42) is
positive (for C > 0). This is an important result which

shows that the motion of the fifth coordinate has an anti-
gravitational effect on an observer in a 4D bulk in which
the inflaton field has a 4D mass m0. This fact should be
responsible for the extra force (40) because the observer
“is placed” in a non-inertial frame (or 4D bulk). In this
framework the motion of the fifth coordinate is viewed on
the bulk as an extra force. Note that it becomes zero as
C → 0, because in this limit Uξ → 0 and

V (ϕ) → 1
2

[
(Rh)2 −

(
b0
b

)2
]

(∇Rϕ)2 .

On the other hand, Uξ → 0 as t → ∞, because Ḣ < 0
(and ḣ < 0) along all the history of the universe, such that(
H
H0

)
t→∞

→ 0. Hence, for very late times the external

force (40) on the bulk becomes negligible. However, this
force should be very important in the early universe when
H/H0 
 1 and the equation of state is p � −ρ, p and ρ
being respectively the pressure and energy density. Note
that H0 is the value of the Hubble parameter at the end
of inflation.

To illustrate the formalism we can consider the case
where h(t) = t−1 p1(t) and H(t) = t−1 p(t), where

p1(t) =

√
(2/3 +At−2 −Bt−1)2 +

C

3
t2, (43)

p(t) =
√

2/3 +At−2 −Bt−1. (44)

Here A = 1.5 1030 G1, B = 1015 G1/2 and we take the
special case where the constant C is the cosmological con-
stant Λ: Λ = 1.5 10−121 G−1. Furthermore, G = M−2

P
is the gravitational constant and MP = 1.2 × 1019 GeV
is the Planckian mass [18]. The function p1(t) represents
the power of expansion of the universe in Planckian times.
For early times p1(t) 
 1 and the universe is accelerated
(b̈ > 0). At tr � 1016 G1/2, after inflation ends, the uni-
verse becomes radiation dominated: p1(tr) � 1/2 and after
it (for t 
 tr) matter dominated: p1(t 
 tr) � 2/3. How-
ever, at t � 1060.22 G1/2 the cosmological constant begins
to become determinant and the universe becomes almost
vacuum dominated (quintessential expansion): p � − 2

3ρ.
The function p(t) represents the power of expansion of the
universe without the cosmological constant. The difference
between p1 and p becomes notorious for very large time
(i.e., for t > 1060.22 G1/2). Numerical calculations give
us the time for which b̈ = q = 0 at the end of inflation:
x(t0) � 14.778 [we take x(t) = log10(t)]. At this moment
N(t0) = 0, but afterwards it becomes positive. Further-
more, for x(t) > x(t∗) [with x(t∗) � 60.22], p1 begins to
increase from the value p1 � 2/3 and the 4D bulk universe
is accelerated. In other words, as we demonstrated in a
previous work [18], the present day observed (quintessen-
tial) acceleration of the universe is a consequence of the
non-zero Λ, and has been notorious since the universe was
nearly 4 billion years old (when the supernovae explosions
occurred).
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4 Final comments

In this work we have studied the possible origin of extra
force and extra mass from a non-compact Kaluza–Klein
formalism recently introduced by using the Hamilton–
Jacobi formalism in the framework of cosmological mod-
els. However, it is one of the two possible outcomes of a
study of this topic (see, for example, [10]). We have exam-
ined the inertial 4D mass m0 of the inflaton field on a 4D
FRW bulk in two examples. In the first one ds2 = dS2, so
that the inertial mass m0 is the same as the 5D gravita-
tional mass M(5) of the inflaton field. As a consequence of
this fact there are no extra forces on the 4D bulk. However,
in the second example antigravitational effects on a non-
inertial 4D bulk should be a consequence of the motion
of the fifth coordinate with respect to this bulk, because
dS2 �= ds2 so that m2

0 > M2
(5). This disagreement between

the 4D inertial and 5D gravitational masses is viewed on
the 4D bulk as an extra force. The important point here
is that m0 has a geometrical origin and depends on the
frame of the observer. However, M(5) is a 5D invariant
gravitational mass and does not depend on the frame of
the observer. In other words, all test particles travel on
five-dimensional geodesics but observers, who are bounded
to space-time, have access only to the 4D part of the tra-
jectory. Finally, in the cosmological model here studied,
we find that both, the discrepance between m0 and M(5)
and extra force (on cosmological scales), are bigger in the
early universe [i.e., during inflation (x(t) < 14.778)], but
become negligible for large times. However, from the point
of view of experimentation, at present such a discrepance
should be more notorious on astrophysical scales, where
gravitational instabilities are important.
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